Telegram Group & Telegram Channel
#геометрия #задача

В треугольнике ABC I — инцентр, K — середина меньшей дуги BC описанной окружности. На касательной к (ABC) в K выбрана произвольная точка P. Прямая PI вторично пересекает окружность (PBC) в точке Q. Докажите. что треугольник, образованный прямыми PQ, QA, PK равнобедренный.



tg-me.com/justsciencemath/124
Create:
Last Update:

#геометрия #задача

В треугольнике ABC I — инцентр, K — середина меньшей дуги BC описанной окружности. На касательной к (ABC) в K выбрана произвольная точка P. Прямая PI вторично пересекает окружность (PBC) в точке Q. Докажите. что треугольник, образованный прямыми PQ, QA, PK равнобедренный.

BY JustScience | Олимпиадная Математика




Share with your friend now:
tg-me.com/justsciencemath/124

View MORE
Open in Telegram


JUSTSCIENCEMATH Telegram Group Telegram | DID YOU KNOW?

Date: |

Telegram announces Search Filters

With the help of the Search Filters option, users can now filter search results by type. They can do that by using the new tabs: Media, Links, Files and others. Searches can be done based on the particular time period like by typing in the date or even “Yesterday”. If users type in the name of a person, group, channel or bot, an extra filter will be applied to the searches.

China’s stock markets are some of the largest in the world, with total market capitalization reaching RMB 79 trillion (US$12.2 trillion) in 2020. China’s stock markets are seen as a crucial tool for driving economic growth, in particular for financing the country’s rapidly growing high-tech sectors.Although traditionally closed off to overseas investors, China’s financial markets have gradually been loosening restrictions over the past couple of decades. At the same time, reforms have sought to make it easier for Chinese companies to list on onshore stock exchanges, and new programs have been launched in attempts to lure some of China’s most coveted overseas-listed companies back to the country.

JUSTSCIENCEMATH Telegram Group from kr


Telegram JustScience | Олимпиадная Математика
FROM USA